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e Text mining-based CRAB tool could significantly improve the risk assessment process.
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ABSTRACT

As many chemicals act as carcinogens, chemical health risk assessment is critically important. A
notoricusly time consuming process, risk assessment could be greatly supported by classifying chemicals
with similar toxicological profiles so that they can be assessed in groups rather than individually. We have
previously developed a text mining (TM)-based tool that can automatically identify the mode of action
(MOA) of a carcinogen based on the scientific evidence in literature, and it can measure the MOA
similarity between chemicals on the basis of their literature profiles (Kot} et al, 2009, 201 2). Anew
version of the tool (2.0) was recently released and here we apply this tool for the first time to investigate
and identify meaningful groups of chemicals for risk assessment.

We used published literature on polychlorinated biphenyls (PCBs)—persistent, widely spread toxic
organic compounds comprising of 209 different congeners. Although chemically similar, these
compounds are heterogeneous in terms of MOA. We show that our TM tool, when applied to 1648
PubMed abstracts, produces a MOA profile for a subgroup of dioxin-like PCBs (DL-PCBs) which differs
clearly from that for the rest of PCBs. This suggests that the tool could be used to effectively identify
homogenous groups of chemicals and, when integrated in real-life risk assessment, could help and
significantly improve the efficiency of the process.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

based on experimental studies in various model systems {IARC:
httpsmonographsdarefr)) (Rappapoert and Smich, 2000 Borgery

The need for assessment of human health risks posed by
environmental chemicals is growing. Huge efforts are being
invested in identification of suspected carcinogens in particular.
To establish carcinogenic effects of a chemical (or a mixture of
chemicals) in humans, multiple epidemiological studies showing
correlations between exposure and health outcomes are needed.
These have to be supported by a plausible “mode of action” (MOA)

* Corresponding author at: Institute of Environmental Medicine, Karolinska
Institutet, Box 210, 171 77 Stockholm, Sweden. Fax: +46 8 34 38 49.
E-mail addresses: iinran.alii@kise, epa_st hooson (1Al

Futpe {{dxadotorg/ 33016/t 201531003
0378-4274]/© 2015 Elsevier Ireland Ltd. All rights reserved.

ot al., 2004),

A MOA refers to a sequence of key events that result in cancer
development, capturing the current understanding of different
processes leading to carcinogenesis. Identification of a chemical’'s
MOA is a heavily literature-dependent task which could greatly
benefit from text mining (TM) support. MOA analysis requires a
thorough review of literature available for each chemical under
inspection. Since the scientific data used for MOA assessment is
highly varied and well-studied chemicals may have tens of
thousands of publications, literature review can be extremely
time consuming when conducted via conventional means, ie.,
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typically a keyword-based search via PubMed search interface
followed by manual expert judgment (Korhonen et al, 2008).

We have recently introduced and released CRAB 2.0—a
powerful, fully-integrated TM-based tool designed to assist the
entire process of literature review in real-life cancer risk
assessment (Korbonpen et al, 2012; Guo ot al, 2014). The CRAB
tool classifies PubMed literature on a given chemical according to
the taxonomy based on currently established carcinogenic MOAs
(¥orbonen et al, 2008), The distribution of classified literature for
individual MOAs referred to as “MOA profile” below have proved
highly accurate in intrinsic evaluations and have also been used to
confirm known properties of chemicals without human input
(Korhonen of al, 2012). However, no study aimed at improving
real-life chemical risk assessment has been reported using this
new version of the tool yet.

Here we focus on this, and in particular the potential of the tool
in enabling simultaneous study of the carcinogenic effects of
several cancer causing agents through an extensive analysis of
existing PubMed literature. We investigate whether the tool could
be used to identify groups of chemicals similar in their MOA. If yes,
it could enable more efficient risk assessment in the future.

Polychlorinated biphenyls (PCBs) are man-made products that
have been used in technical applications since 1929. Although their
production was terminated in many countries during the 1970s,
due to the persistent nature and high lipid solubility, the general
population is exposed to PCBs mainly via food and to some extent
from indoor air (AT3DE, 2830:), The toxicity of PCBs is still studied
in many laboratories (Ferpargiez-Gonzaler of al, 3075 Hu ot sl
2015 Guinete et al, 2014), including our own (Al-Anati ef al,
20118), The literature on PCBs is huge, and the risk assessment is
complicated by the fact that they comprise of 209 different
congeners with variable toxicity. Some are established or
suspected human carcinogens (IARC), while others may have
other conspicuous effects and some might be of negligible concern.

PCBs are often divided into two subgroups: dioxin-like {DL-
PCBs) and non-dioxin-like (NDL-PCBs). This division is based on
the positions of the chlorine atoms, which determine the affinity
for and activation of the aryl hydrocarbon receptor (AhR).
Activation of AhR is considered the MOA of DL-PCBs and AhR
activation is also the MOA of the known human carcinogen dioxin
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)—hence the term “di-
oxin-like”. In health risk assessment of DL-PCBs (or mixtures of
them) a relative toxicity factor (toxic equivalency factor, TEF) is
used to compare a DL-PCB with TCDD. The use of TEF values is
based on the assumption that DL-PCBs and TCDD act via the same
MOA. In the current WHO-TEF concept, TCDD has a value of 1 and
most of the DL-PCBs have TEF values varying from 1 x 107" to 107>,
NDL-PCBs do not bind AhR, and therefore other MOAs are assumed
(Schware and Appel 2005, Van den Berg e al, 2006).

In this study we investigated and analyzed the TM-generated
MOA profiles of DL-PCBs and NDL-PCBs. Each profile revealed a
distinct distribution of the literature over different MOA categories,
indicating that CRAB 2.0 can detect the MOA differences at a fine
level of detail and thus identify homogenous groups of chemicals.
This suggests that the tool has the potential to assist the
development of protocols for assessing groups of chemicals, which
might lead to improved efficiency of risk assessment,

2. Methods
We used the newly developed CRAB 2.0 tool'—to classify

PubMed literature of different chemicals according to their
carcinogenic MOAs. The tool supports gathering of literature via

PubMed query interface, semantic classification according to MOA,
and automated statistical analysis of the classified literature.

2.1. Gathering literature

For comparative analysis we collected PubMed literature on a
group of DL-PCBs (PCB 126, 77, 81, 169, 105, 114, 118, 123, 156, and
157) with focus on PCB126, a reference chemical TCDD to which
the toxicity of DL-PCBs are compared and a group of NDL-PCBs
(PCB 52, 74,101,118,122, 128, 138, 153,170, and 180) with focus on
PCB153 (Stenberg ot al, 2011). CRAB 2.0 interacts with E-
utilities’—the PubMed query interface. As shown in CRAB tool
interface (Supplementary Fig. 1), a query for a particular chemical
(e.g., PCB153) is forwarded to PubMed, and the relevant abstracts
resulting from the query are downloaded on the CRAB 2.0 serverin
XML format.

2.2. Text mining-based MOA analysis of literature

The collected abstracts are automatically classified according to
a taxonomy which covers different types of scientific data used for
cancer risk assessment (Korhonen ef al, 2(412). The taxonomy is
based on current understanding of the processes leading to cancer
and includes two main categories: genotoxic and non-genotoxic
MOA, and is further organized into more specific sub-categories
according to the classification by Hattic et sl 2808 (Korhonen
et al, 2004, 2012), The CRAB tool downloads all PubMed abstracts
for a given chemical for automatic analysis of the abstracts
according to the evidence mentioned for different carcinogenic
MOA sub-categories. Thus based on the literature data and
classification pattern, a publication profile is generated {displayed
as percent of the total number of MOA abstracts). The tool does not
exclude abstracts with no-effect results; however such results are
rarely published. A possible exception is data on mutagenicity, an
endpoint that might require manual inspection.

In semantic classification of literature, each abstract down-
loaded from PubMed is turned into a vector of “bags of words”
features, whose value equals 1 if the corresponding word/MeSh
term is observed in the abstract, and 0 otherwise. Abstracts
represented by feature vectors are then assigned to relevant
taxonomy class(es) using supervised machine learning: by support
vector machines (SVM) with the Jensen-Shannon divergence (JSD)
kernel trained in advance on a set of manually classified MOA
abstracts (not necessarily focused on any specific chemical). The
output of semantic classification is a taxonomy structure, where
the number of abstracts assigned to each category is shown
alongside the link to the relevant abstracts (Supplementary Fig. 2).
Evaluation of the classifier reported in (Korhoner ef al, 2012)
shows that it is highly accurate at an F-score of 0.78. The processing
time depends on data size, ranging from a few minutes to a few
hours (memory: 5,859,372 kB, CPU: Quad-Core AMD Opteron{tm)
Processor 2347 HE).

2.3. Statistical analysis of classified literature

In evaluation of the first version of CRAB (Karhonen et al, 2012),
post-hoc statistical analysis of the classifier output (e.g., calculat-
ing and visualizing the distribution of abstracts over taxonomy
classes) proved highly useful for obtaining a broad overview of the
data in literature and identifying the data gaps. CRAB 2.0 allows
viewing statistics of classified literature with a single click
{Supplementary Fig. 3). The system interacts with R*—a free
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software environment for statistical computing and graphics. The
number (or percentage) of abstracts assigned to each MOA
category is passed to R to generate a MOA profile of the chemical
under inspection. The profile is a .zip file including bar plots in pdf
format showing the distribution of abstracts, as well as raw data
(the number of abstracts under each category) in txt format that
could be easily imported into popular software for statistical
analysis {e.g., SPSS or excel) if necessary.

The MOA profiles for different (groups of) chemicals are
compared, and the statistical significance of differences is tested
using chi-squared homogeneity test for each individual MOA
category {positive vs, negative), and for each pair of chemicals
(using a 2 x 2 contingency table). This is better preferred than a
2 x N contingency table encapsulating all MOAs, since a single
abstract maybe relevant for multiple MOAs. The individual p-
values are then adjusted by a Bonferroni correction for the entire
profile’s p-values.

3. Results
3.1. MOA profiles for DL-PCBs and NDL-PCBs

We compared the MOA profiles for two groups of PCBs: DL-PCBs
and NDL-PCBs (Fig. 1). CRAB 2.0 evaluated 1648 PubMed abstracts
for a group of ten DL-PCBs {(mentioned in Section Z; 788 abstracts)
and ten well-studied and abundant NDL-PCBs (mentioned in
Section 2Z; 860 abstracts) {PubMed, March, 2015). Around 40% of
these were identified as relevant for MOA classification. The
distribution of literature over MOA taxonomy shows statistically
significant differences (p < 0.01) in the overall profile for the whole
group of DL-PCBs as compared to the whole group of NDL-PCBs
(fig. 1). A remarkable difference is seen in the proportions of “AhR
activation”-related literature for DL- and NDL-PCBs, and as
indicated in Section 1, this difference is expected. Other differences
are seen in the MOA categories of “oxidative stress”, “cell
proliferation”, “cell death” and “hormonal receptor”. This suggests
that there are systematic differences in literature covering these

two groups of congeners, and that the tool has the capacity to
detect these differences.

3.2. MOA profiles for TCDD, PCB126 and PCB153

PCB126 is a common and well-studied DL-PCB and PCB153 is
equally common and well-studied NDL-PCB. These compounds are
often referred to as indicator congeners for respective groups. We
used CRAB 2.0 to analyze 538 abstracts for PCB126 and 570 for
PCB153 (PubMed, March, 2015) and created a MOA profile for each
congener. The profiles were based on 315 abstracts concerning
PCB126 and 224 abstracts concerning PCB153 selected by the tool
as relevant for MOA classification. When comparing these profiles,
we find significant differences (p < 0.001) between them (¥Fig. 2).
The differences between PCB126 and PCB153 are mainly reflected
in the individual MOAs “AhR activation”, “cell death”, and “strand
breaks”, and are thus slightly different from the results shown in
Fig, 1. We also analyzed the MOA profile for TCDD, using 8572
abstracts, and compared it to the profiles of the two PCBs. The
comparison of PCB126 and TCDD indicates differences regarding
“AhR activation” and “oxidative stress” (p < 0.001) while that of
PCB153 and TCDD shows differences in “AhR activation”, “cell
death”, “oxidative stress” and “cytotoxicity” (p < 0.001). In further
analysis we compared TCDD with the DL-PCBs and found similar
differences as between TCDD and PCB126 (¥ig. 3).

3.3. Testing group profiles by comparing them with indicator PCBs

To test whether the two indicator PCBs are representative for
the two groups we compared their MOA profiles statistically. The
MOA profile of the group DL-PCBs does not exhibit significant
differences when compared with that of PCB126 (Fig. 4). Similarly,
the profile for the group NDL-PCBs does not significantly differ
from that of PCB153 (¥ig. 5). However, the reversed comparison
{DL-PCBs group MOA profile compared with PCB153, and the NDL-
PCBs group MOA profile compared with PCB126) does show
significant differences {data not shown).

15 v

# NDL-PCBs # DL-PCBs

Mean % Abstractsin MOA category

Fig.1. Literature profiles for DL-PCBs and NDL-PCBs. The group profile for DL-PCBs differs significantly from the group profile for DL-PCBs (p < 0.01). (*) denotes (p < 0.01), (#)

denotes (p < 0.001).
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% Abstracts in MOA category

Fig. 2. Literature profiles for PCB126 and PCB153. The profiles are significantly different (p < 0.01). The column for TCDD and “AhR activation” is truncated, and figure gives¥% of

abstracts.
4. Discussion and Conclusion

Automatic text mining-tool can be used to identify the
carcinogenic MOAs for a group of chemicals. By using the recently
developed TM tool CRAB 2.0 we have analyzed thousands of
PubMed abstracts for comparing the MOA properties of PCBs, We
selected the environmental contaminants PCBs for this case study
as they constitute 209 similar but chemically distinct congeners,

and there is a well-recognized subgroup, DL-PCBs, with a specified
MOA. We investigated whether CRAB 2.0 is able to differentiate DL-
PCBs from NDL-PCBs in terms of their MOA profiles according to
semantically classified scientific literature. We showed that this
can be done at a high level of confidence and fine level of detail.
This is a highly promising finding, suggesting that our methodolo-
gy can not only be used to accelerate current risk assessment, as
shown by previous studies (Korhonen ef sl, 2012, Silins e al,
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Fig. 3. Literature profiles differ significantly for DL-PCBs, NDL-PCBs and TCDD. The column for TCDD and “AhR activation” is truncated, and figure gives% of abstracts.
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Fig. 4. The indicator compound PCB126 profile is not significantly different from the group profile for DL-PCBs.

2i114), but also provide the means for improved, more efficient risk
assessment that involves assessing chemicals in semantically
meaningful groups.

The time saving aspect is indicated by the large number of
abstracts that were analyzed by the tool in few minutes, and the
fact that 60% were excluded from analysis as irrelevant. Performed
via conventional means, an expert toxicologist may need weeks to
complete equivalent analysis. CRAB 2.0 could greatly support
expert assessment as it allows assessors to focus on specific
properties or data types of chemicals. Although literature profiles

do not alone constitute adequate evidence for risk assessment,
they can provide a thorough overview of available scientific
literature and an excellent starting point for manual checking of
details. In order to do complete hazard identification for risk
assessment, the classified literature needs to be examined more in
details.

Besides allowing for grouping chemicals, the tool might also be
used for identifying data gaps (i.e,, less well-studied areas) for a
group of chemicals. It could also provide material for hypothesis
generation. For example, it could be used to analyze why DL-PCBs

20 57

DL-PCBs ®PCBI1S3

Juny
e

% Abstracts in MOA category
=3

v

Fig. 5. The indicator compound PCB153 profile is not significantly different from the group profile for NDL-PCBs.
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differ from TCDD, and reading the relevant papers may guide risk
assessors to important questions about the differences. Or it could
be used to shed light on the currently unexplained facts (e.g., why
DL-PCBs have a higher percentage of abstracts than NDL-PCBs in
the “chromosomal changes” and the “inflammation” categories).
Such facts can be highlighted by the tool and may lead to
hypothesis generation. In addition, besides PCBs, there are many
other groups of chemicals (e.g., polyaromtic hydrocarbons,
endocrine disrupters, flame retardants etc.) that might benefit
from risk assessment within chemical groups identified by the tool.

Moreover, in the future the tool could be developed further in
various ways, e.g., to take into account journal impact factors,
number of citations, and cross references. This may help
identifying critical articles and organising the literature for
overviewing available information. Although currently focused
on cancer, the CRAB tool can be easily adapted to other health risks,
provided with a well-defined taxonomy and accordingly, examples
of classified literature for machine learning. It might also be of
interest to develop TM-based strategies for optimizing subdivi-
sions of chemical groups with many publications.
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